Submitted to Advances in Intelligent Data Analysis Symposium (AIDA 2001)
at the Computational Intelligence Modeling and Applications Conference (CIMA 2001)
of the International Computer Science Conventions in Bangor, Wales, UK from June 19-22, 2001

A Learning Architecture for Intelligent Behavior in a Robot

Joseph A. Lewis, George F. Luger
{jalewis, luger }@cs.unm.edu
Department of Computer Science; FEC 323 University of New Mexico
Albuquerque, NM 87131

Abstract

We present a computational architecture for modeling
intelligent behavior in a specific problem domain. Qurs is a
learning architecture that embraces a dynamical, embodied
notion of intelligence relying on self-organizing emergent
processes. We discuss autopoeitic systems, those systems
whose components are engaged in an ongoing process of
mutual self-maintenance. We believe autopoeisis to be an
essential characteristic of intelligent systems. Structural
coupling, or the capacity of the internal dynamics of an
autopoeitic system to adapt to its changing environment,
enables the architecture to utilize emergent representations
of its environment. This representation makes possible
further adaptive behavior. We describe the architecture in
detail along with methods of development and training for a
specific domain. We use our robot control architecture,
Madcat (Lewis & Luger 2000), as an instantiated example of
this architecture.

Introduction

We present a learning architecture for intelligent behavior
in a. robot that synthesizes several complementary
approaches from the last decade. The architecture
originates from a family of projects at Hofstadter’s Fluid
Analogies Research Group at Indiana University (1995).
Specifically, it extends Melanie Mitchell’s work on Copycat
(1993). We have further refined that architecture using
suggestions from McGonigle (1998), in the Madcat project
(Lewis & Luger 2000). Madcat is an embodied instantiation
of the architecture in a robot, which supports interactive
learning about its environment through exploration.

In this paper we first describe refinements to the Copycat
architecture motivated by recent ideas about embodied
cognition. Next we discuss the role of emergent
computation and why it is an important tool for adaptive
representation. Then a brief look at how dynamical systems
exhibit emergent representation will set the stage for a
discussion of the components of the architecture.
Concluding the theoretical background, we discuss
Maturana and Varela's notion of autopoeisis—the
supporting metaphor for our architecture. We then describe
the components that implement this architecture.

From our experience with the Madcat project, we
describe techniques for developing the architecture to
address a specific problem domain. We also describe a
method of training the architecture once it has been
constructed. We conclude by identifying some additional
problems for which this architecture might be appropriate.

It is useful to ground our discussion in some description
of intelligent behavior. We link intelligence to the notion of
evolving complex adaptive systems (ECAS) proposed by

Steels (1996). Intelligence involves adaptation. Adaptive
systems that we consider intelligent typically are complex,
in the sense that we cannot easily predict how they will
change internally as they respond to stimuli. Finally,
intelligent systems evolve their capacities for complex
adaptation over time.

Steels (1996) proposes four salient characteristics of
ECAS. The first of these characteristics is self~-maintenance
(we prefer the term autopoeisis from Maturana and Varela
(1980) who also describe a mutual maintenance relationship
among system components). Steels’ remaining
characteristics for describing intelligence are adaptivity,
information preservation, and, in response to the demands
of a complex environment, a spontaneous increase in
complexity. We also follow Steels (1996) suggestion that
systems can meet these four criteria through a general
purpose dynamical architecture and through capture of
emergent properties, enabling the formation of concepts
about and representations of the environment. We feel that
the emergence of structures evolved through ongoing
coupling with an environment is a defining feature of
intelligence. We call this behaviorally coupled
representation.

Embodied Cognition

Early artificial intelligence (AI) programs relied heavily on
the physical symbol system hypothesis of Newell and
Simon (1976). Those programs affected their world and
created their understanding of it through the manipulation
of symbol structures. Winograd's SHRDLU project is a
prime example (1972). When limitations were met in these
programs’ behavior, one response was that these systems
merely lacked a sufficiently large database of knowledge
about their world. Even after the completion of very large
“common-sense” knowledge databases, such as Lenat’s
CYC project (1990), there still has not been a consistent
increase in the intelligence of programs relying on
knowledge alone. Brooks (1991) responded to this problem
with the subsumption architecture in which a few layers of
well-defined feedback-controlled subsystems interact with
the environment mostly independently of each other and
without any kind of state or information representation.
Some ideas from the subsumption architecture hailed the
coming insights from embodied cognition. The move away
from rigid symbolic representations has been supported by
research such as (Crutchfield & Mitchell 1998) on emergent
computation in cellular automata and (Hofmeyr & Forrest
2000) on distributed computation in an immunological
model. We agree that wholesale rejection of representation

as a process within cognition misses something essential.
Our architecture demonstrates the utility of an embodied
emergent representation that is more fluid and adaptive
than traditional symbolic representation.

Embodied cognition proponents argue that the
evolutionary development of intelligent behavior in natural
systems arises from their embodiment as physical
organisms in constant interaction with their environment.
Intelligent behavior develops to produce more effective
coupling with the environment for greater adaptivity and
survival. The nature of intelligence closely relates to the
body and how it couples with an environment. What
bodies “know"”, for instance about how to catch a ball or
walk up a hill, plays a greater role in producing intelligent
behavior than was previously appreciated.

There is a particular advantage to this tight coupling
between the environment and intelligence, which Clark
(1997) calls scaffolding. A system will adapt to utilize
regular characteristics of its environment which have been
frequently associated with some behavior to aid in the very
production of that behavior. For example, “common sense”
might suggest that in order to catch a ball one “computes”
its trajectory to predict where it will fall within reach and
then runs to that location. Clark points to research that
indicates that instead one simply maintains a certain angle
of gaze at the ball, which happens to entail running at a
speed that puts one where the ball will land. A known
relationship between the environment and the organism
maintained through feedback can be a natural alternative to
explicit use of cognitive resources. Deliberate scaffolding
occurs when an organism relies on some state of the
environment to trigger a particular response, as when we
place a book on a table knowing that upon seeing it the
next momning we will recall the need for it at the office.

The Madcat project extends Copycat both architecturally
and by providing a means of environmental coupling.
Madcat (a Nomad SuperScout II robot) explores its space,
discovering the objects therein utilizing emergent
structures that represent the surfaces in its environment.
As it continues to explore, Madcat refines its
representation into a map that augments its navigational
capabilities. The environmental coupling comes from
sixteen sonar sensors around the exterior, from which
Madcat can take distance readings at variable intervals,
typically several per second. Madcat also has information
from a bumper sensor that encircles its exterior indicating
the location of contact with objects and a color vision
camera that uses very simple edge-detection for
corroborating data and for location recognition. Madcat
can also engage in interactive refinement of its emerging
internal map, such as repeating the passage of an object
from a different angle to corroborate its internal model. We
feel that the ability to glean information from interactions
with an environment is an important step towards realizing
ECAS, and a distinction from knowledge-based Al
programs. While the Madcat project is an example of
physical embodiment in the world, the notion of
embodiment can be applied to any domain, however

abstract. Agents simply must be able to affect their
embodying world and to rely on the results of those effects
for adapting their behavior. Other feedback-based learning
models can be found in Holland's (1986) classifier systems
and reinforcement learning, e.g. (Sutton & Barto 1998).

Emergent Computation and Representation

One of the most difficult problems with traditional
approaches to artificial intelligence is determining when and
how to produce novel behavior. Such programs are
notorious for getting stuck along the way to a solution. A
related problem is brittleness, the inability to modify
behavior just slightly from the prescribed behavior when
the problem presents itself in a slightly different manner.
Attempts to address these issues have led to the study of
emergent properties: those which cannot be predicted by
examining the state of the system and its rules prior to their
appearance. When a system with the capacity for
emergence is coupled to environmental demands,
properties often emerge to meet those demands, leading to
new adaptive features of the system.

We believe that a computational accounting of
intelligence will likely utilize emergent properties. There are
two parts of the Madcat architecture which make possible
its emergent behavior. First, as in the original Copycat
program, behavior of the architecture is achieved piecemeal
by myriad tiny units of executable code, called codelets
whose execution is managed by a component called the
coderack. Each accomplishes only a step or two toward the
realization of possibly several different goals in the
program, but many are created as time passes and their
collective execution produces the behavior of the system.
There are many points of interaction among these codelets
which provides opportunity for emergent behavior. The
second feature that helps to avoid brittleness and provides
an opening for emergence is randomness. Although the
coderack tends to execute the most urgent codelets, it has a
random component that allows it sometimes to choose from
among the less urgent ones. This prevents it from being
locked into a certain sequence of executions and provides
the chance to discover other possibilities. Hofstadter (1995)
devotes an entire chapter to the merits of randomness in
the service of intelligence.

The code executed in this emergent fashion has many
roles. One is to produce relevant behavior for the robot.
Another is to discover relationships among the sonar
readings at a given instant. As these relationships are
discovered they (probabilistically) generate corresponding
information structures in the program. The kinds of
relationships that are being sought at any given instant is
an emergent feature of the program: a combination of those
it has already found, how the robot has been moving,
whether the program has a clear model yet or not, etc. The
component where these structures are built is called the
workspace. Ultimately these structures give rise to the map
which it is Madcat’s goal to build.

As the navigational behavior of the robot emerges so do
the internal data structures which serve as an aid in the
robot’s navigation. By design these structures are
intricately layered, and woven throughout them is a
context-dependent history of their construction. Moreover
their evolution participates in controlling the evolution of
the rest of the system as well. These are important
differences between these emergent structures and their
counterparts in programs that use traditional symbol
manipulation. We say that the structures and the behavior
self-organize.

Indeed something significant is taking place here that is
common in dynamical systems. Structures often are the
echo of some pattern in a process. Consider the so-called
Bénard instability. A viscous oil is placed between two
metal plates, one of which is heated. At first the heat
passes through the oil by conduction, the molecules
increasing their individual kinetic energies and conducting
the heat through their collisions. As the temperature
difference increases above a certain threshold, convection
begins to occur. The fluid begins to self-organize into a
regular grid of same-sized hexagonal convection cells. The
walls and internal regions of these cells carry opposite
convection currents. Structure emerges out of chaos
echoing the patterns of the underlying interactions. This is
the same deep connection between structure and process
described above that is the heart of Madcat's functioning.

Another feature of dynamical systems that the Bénard
instability demonstrates is that complex processes and the
structures produced by their patterns can spontaneously
reorganize themselves in response to external stimuli. This
is reminiscent of the behavior of attractors in dynamical
systems. In high phase-space a great diversity of data-
points could be just over a threshold that triggers some
different behavior. In our Madcat example, even the shift of
focus of the codelets from searching for one kind of
relationship to another could be triggered in similar fashion.
This is the essence of a self-organizing system: its own
behavior meshed with information from its environment
gets fed back into the system, providing the opportunity to
adapt its functioning toward particular effects.

In Madcat the slipnet provides the web of connections
linking the behavior and the structures through time. The
slipnet is a semantic network organized with spreading
activation and multiple kinds of links among its nodes,
some of which can change in length. The evolution of
structures in the system impacts the topology of the
slipnet, making the program's own behavior part of the
context-dependent control. The slipnet actually models
attractor-like behavior: as activity is added to its nodes
from throughout the program they reach thresholds where
they may rise to full activation. Groups of active nodes tend
to correspond to certain behaviors and structures in the
program. The success of codelets impacts the slipnet as
does the building of structures, and the slipnet in turn
controls which particular codelets and structures are
engaged. In the next section we discuss autopoeisis, a
formalization of this mutual self-maintenance, and the

emergent features that it can produce. We believe Madcat
is an instance of an autopoeitic system. Furthermore,
identifying this as a cogent property of computational
models of intelligence will provide a framework in which to
build dynamical systems whose emergent features are
adaptively embodied.

Autopoeisis

The term autopoeisis originates from research on two
questions (Maturana and Varela 1980). The first was “what
is the nature of perception,” and the other “what is the
organization of living systems”. ~Autopoeisis, literally self-
making, captures what Maturana and Varela believed was
common to both. Each of the components of an autopoeitic
system participates in the creation and maintenance of the
others.

Living systems exhibit this property of mutual self-
maintenance. Consider a cell membrane. Its layers of lipids
and proteins regulate what molecules can enter and leave
the cell, thus maintaining the chemistry of the cytoplasm;
while it is that very chemistry that maintains the lipid-
protein layers of the membrane. Cognitive systems (by
Maturana’s definition: systems engaged in perception)
seem to be involved in a similar mutual feedback
relationship among their components and the external
features that affect their behavior.

Maturana and Varela further note that it is a hallmark of
living systems that their external environments trigger
changes in the internal structure of the system--changes
that afford effective behavior--but that the nature of those
internal changes are dictated by the dynamics internal to
the system rather than being specified by the environment.
They gave the name structural coupling to the changes
triggered in the internal dynamics of a system by its need
for effective behavior in an environment to which it is
exposed. The information-preserving quality of the concept
of structural coupling has been extended (Hendriks-Jansen
1998) through the study of evolution and ethology to
provide a grounding of species’ behavior, even meaning
forms, in the history of the organism.

The idea of structural coupling is especially important in
our consideration of the essentials of intelligent behavior.
Structural coupling prescribes that a complex system will
modify the nature of its internal dynamics in order to adapt
its autopoeitic functioning to the changing external features
of its environment. Furthermore, the nature of those
changes will be established by the existing dynamics within
the system, subject to its current state and history. This
context-dependent coupling between internal states of the
system and cogent external events comprises what we
consider to be representation. If autopoeisis describes
part of what generates intelligent behavior, then it offers
the position that behaviorally coupled representation
should indeed be a part of our models of intelligent
behavior. We will have to develop models whose
representations are emergent from an environmentally
coupled dynamical system and which do not have to take

on a prescribed form (as is the case in strictly symbolic
systems). These features—emergent embodied dynamical
behavior with an emergent structural footprint for
representation and feedback—are essential to the systems
that exhibit autopoeisis, and we will hereafter take that term
to include them. While there may be further requirements,
we believe that a computational architecture for leaming
and intelligent behavior must at least be autopoeitic.

Slionet

XXX X Codelets
Coderack L—— o

Figure 1: An Autopoeitic Architecture

A General Autopoeitic Architecture

As seen in Figure 1 (and discussed in the preceding
sections) the three primary components of this architecture
are the coderack, the workspace, and the slipnet. The
arrows indicate the direction and influence of information
among the components. As in Copycat, the entropy is a
measure of coherence and consistency among the
structures in the workspace. It provides feedback which
influences the probabilistic decisions constantly made
throughout architecture. The coderack is a stochastic
priority queue that selects the next micro-action (codelet)
for execution. The details of the other components have
been extended and refined from their ancestors in Copycat.
The workspace is the shared arena for the structures that
are built as a side effect of the processes engaged by the
interacting codelets. Finally, there is the context-capturing,
dynamically deformable semantic network that provides
control feedback called the slipnet.

The coderack is the simplest component, being
essentially a stochastic priority queue. Of the three main
components, its implementation is closest to its ancestor in
Copycat . Each codelet is a subclass instance of an abstract
Codelet class which carries an urgency value as well as
private data for managing the codelet within the coderack.
The urgency values of a codelet are assigned by the
component that creates it. They are determined as a
function of the relevance of the codelet to the current set of
most important processes as captured in the activity of sets
of nodes in the slipnet.

There are seven urgency values ranging from extremely
low to extremely high and bins corresponding to each

within the coderack. When a component wishes to create a
new codelet it asks the coderack to post codelets of that
type. The likelihood of this posting and the number posted
is a variable value regulated by the entropy and context
information from the slipnet. [t is also one of the many
parameters that can be tuned in the system. When the
coderack chooses the next codelet for execution, it selects a
bin randomly with a bias toward the higher urgencies that is
mediated again by the entropy.

Each subclass of the Codelet class has one public
method that is the executable code for that codelet. Which
codelet subclasses to develop is a question specific to the
structure-building or behavior-producing actions
appropriate for the problem domain. One difference from its
predecessor in Copycat is that codelets not only build
structures in response to patterns in the data but also may
take action which affect that data or the system's ability to
perceive it. While there is no direct correlate of the notion
of a process in the architecture, each codelet represents a
small step toward the realization of one or more pressures
within the system. Codelets are very similar to classifiers in
Holland’s classifier systems (1986).

The workspace is the locus of shared activity in the
system, very similar to the shared message space of
blackboard systems (as well as classifier systems). The
workspace is essentially a “smart” substrate for the various
types of structures the codelets choose to build. A three-
dimensional array indexed by instance, type, and time, the
workspace is able to provide linear-time access to randomly
selected structures in general, or specified by type or time
index or both. Furthermore, the random selection can be
biased by the salience value of the structures, a bias which
in turn is influenced by the context information in the
slipnet. The amount of this bias is another one of the
tunable parameters of the system.

Each structure is an instance of an abstract
WorkspaceObject class which carry the indices and other
information required to manage the structure within the
search and storage mechanisms of the workspace. For
example, each structure in the workspace carries two
values: importance and happiness. The importance of a
structure derives from the current importance of the
concepts related to that structure as measured by the
context information in the slipnet. The happiness of a
structure reflects how well that structure has been
connected together with other structures of appropriate
type. These two values determine the salience at any given
instant of a WorkspaceObject. How these values are used
to compute salience is yet another tunable parameter of the
architecture. Each subclass carries information specific to
the structure it represents. The question of which
WorkspaceObject subclasses to develop is specific to the
structures that accompany and reflect the activity of the
system as it engages a particular problem domain.

One significant difference between Copycat and Madcat
is that there is one Copycat workspace for all the structures
built from the initial exposure of the system to a problem.
Our system expects to be continually exposed to an

evolving state of the world over time, so the workspace is
actually composed of an array of temporally indexed
snapshots, each of which is analogous to the Copycat
workspace. One kind of structure Madcat can build in any
snapshot of the workspace is a temporal bond, identifying
relationships between structures in different snapshots.
Thus, our architecture is capable of interacting with
evolving patterns in the environment, which deepens the
degree of embodiment. This architectural change supported
the new problem domain: building spatial maps from a
moving robot. The patterns among the temporal relations
between individual sonar readings are used to establish
models of the objects existing in the environment. The
utility of this evolution of the architecture is clear for any
problem that involves continued exposure to a changing
environment.

The slipnet is a network of nodes that alone or in groups
represent relevant concepts for the problem domain. It is
fairly straightforward to determine the context-dependent
micro-actions or codelets the system should have. It is also
not very difficult to determine the relevant structures or
workspace objects to build. However, it is a significant
challenge to decide what are the relevant concepts--nodes
or attractor-like conglomerations of nodes--in the slipnet for
a particular domain. This is especially true since it is
important to avoid introducing too much inductive bias
which might undermine the adaptability of the program.

The slipnet consists of nodes and links. The nodes,
which represent programmer-chosen concepts of
significance for the problem, are connected together by
links that are sometimes /abeled by other nodes in the
network. For example, the nodes front and back could be
connected by a link labeled by the node opposite. Nodes
have activation levels that are incremented whenever that
concept is currently successful and which are decremented
over time by decay. The activation of a node will spread
across links to neighboring nodes whenever it exceeds a
certain threshold (a tunable parameter). The higher the
activation level of a node, the shorter the links for which
that node is a label. So when opposite has a lot of activity,
front and back are more closely linked.

The entropy is an overall measure of coherence and
consistency among the developing structures in the
workspace. Structure-specific measures like importance
and happiness are used in conjunction with context
information from the slipnet to produce this measure. As its
analogue from physics would suggest, the entropy is high
when disorder dominates the workspace and low when the
structures therein couple tightly with one another and fit
into consistent groups.

Almost all of the tunable parameters mentioned so far, as
well as many others, have their effects mediated by the
value of the entropy. For instance, when the entropy is
very high the salience of an object has less impact on its
likelihood of being selected randomly than when the
entropy is low. This means that, before many coherent
structures form, most items in the workspace are equally
attractive to explore. Once more structures form, then those

which have not yet been incorporated into the emerging
structures are more likely to be selected.

Similarly, when the entropy is high the selection of the
next codelet to execute is fairly random; whereas when the
entropy falls the higher urgency codelets are selected with
greater probability. Essentially this allows the system to
shift from parallel, random search toward serial,
deterministic search as it hones in on a useful solution. In
the temporally sequenced problems that this architecture
handles, the falling of the entropy can trigger the movement
to the next snapshot. Entropy provides a coarse form of
self-organizing feedback.

Development and Training

The first step in using this architecture for adaptive
problem solving is to determine what will be its domain of
interaction—what measurements provide its data. In the
original Copycat program this was simply a sequence of
letter-strings that formed an analogy problem. In the
TableTop program (Hofstadter 1995) this was a two-
dimensional arrangement of certain classes of objects. In
Madcat it is the time-indexed set of sonar measurements
taken from the perceptual systems of a moving robot.

The second step is to determine how the program will
interact with the environment from which that data comes.
Copycat had a single exposure to its source problem with
no means of interacting with that environment. Madcat is
embodied in its environment by its ability to exhibit
movement commands for the robot from its emergent
behavior.

The next step in developing this architecture for a
specific domain is to determine the kinds of structures the
program should build in the workspace. These are
motivated by what the user wants the program to produce
as in Copycat’s analogy solution or Madcat's interactively
refined world-map. These structures are akin to the
structures placed in global space in a blackboard system,
little information packets scrupulously advertised for the
next layer of structure-building to select. They are often
discovered recursively during the development of the
architecture for a particular domain. They are typically
proxy objects for measured data or bond structures for
relationships between data or other structures. The
interpretation of structures will typically depend on the
program’s run-time contexts. The structures actually in use
during execution will evolve as the program explores the
problem domain.

Once some basic set of structures is identified, the
codelets that produce them are developed. In Copycat it
typically takes two to three sequenced codelet executions
to get a structure built. First a codelet is posted to
determine roughly the merit of building some structure.
Then if that is high enough a codelet is posted to determine
how useful or important such a structure would actually be.
Then if that is high enough a codelet is posted actually to
build the structure. All this is mediated through context
from the entropy and slipnet. In Madcat, because of real-

time constraints, most structure-building is decided and
accomplished by a single codelet.

Codelets also obtain information from other parts of the
architecture, and the choice of whether to stage this
process must also be made. For instance, most codelets
look for particular relations among particular types of
objects. They select a structure or structures of the
appropriate type using the type-specific biased random
selection interface of the workspace. Then they use context
information from the slipnet to decide whether some new
structure built on these is appropriate

Since the architecture is stochastic, specific sequencing
cannot be guaranteed; thus, it is important to provide
competition among structures. If a new one potentially
conflicts with existing ones a competition allows a context-
dependent decision about which structure to keep.
Choosing the types of codelets establishes the possibilities
for interaction and emergence of behavior. Some codelets
will be responsible for taking measurements. Others identify
relationships and patterns. Still others will produce
behavior.

Finally, the slipnet is developed. This component
represents the inductive bias of the system and it is wise to
develop concepts that are relevant and useful for
describing the structure of the domain without being too
rigid or precise. Usually there will be a set of related nodes
specifying possible relationships among the measurements
the program takes of its environment. There may also be
meta-concepts represented about how those measurements
can be related at a higher level and so on. Some domains
have a good deal of inherent structure, as with the
transitive successor and predecessor relations among the
letters of Copycat’s letter-string domain, including even
meta-relations like opposite between successor and
predecessor. Developing a set of concepts and relations
among them for describing such a structured domain starts
with much information and is gradually refined. On the
other hand, some domains may be less structured at first, as
with Madcat’s ring of sonar sensory data. In Madcat a
simpler slipnet is used with only a few nodes and links to
build simple similarity bonds among readings and groups of
readings. This happens every snapshot. A more complex
slipnet is used that carries information across snapshots
and guides the construction of temporal pattern structures
that are used to map objects.

The nodes in the slipnet are responsible for posting
codelets according to the concepts with highest activation.
The amount and likelihood of those codelets is another
tunable parameter. It must also be determined when and
how much to spread activation among nodes, how much to
decay activation over time, how the links should change as
activation changes, and so on. All these tunable parameters
that impact the behavior of the system can be honed for
particular behavior with some patience. For example, in
Madcat, about two months went into the initial tuning of
these parameters leading to the behavior seen in Figure 2.

Once constructed, training the architecture consists of
an iterative process of varying the tunable parameters and

determining the effect on the behavior in some suitably
determined test suite. The space over which the behavior
varies has many local peaks, so the problem domain should
be widely represented in the test suite. A technique we are
currently using is to externalize the values for the tunable
parameters into a Genotype class and to use a genetic
algorithm to evolve an optimized tuning of the values in
that class. The usefulness of this approach depends largely
on the ease of constructing a fitness function for the
application to which the architecture is being applied.

The Madcat Architecture

We use Madcat throughout our discussion of this general
autopoeitic architecture as a concrete example of how to
apply the architecture to a specific problem domain. The
Madcat project specifically develops this autopoeitic
architecture as the control system for a Nomad Super Scout
[l robot whose task is to move about its space and
construct an emergent, interactively refined map of its
environment. The sequences of data from its 16 peripheral
sonar sensors and color vision camera, taken at self-
determined intervals, are synthesized to produce a map that
enhances the behavior of the robot. For example, the
development of internal structures reflecting objects in the
environment allows the robot to avoid obstacles that it
otherwise might not see (Lewis & Luger 2000). Figure 2
shows an example of the internal structures built by the
architecture reflecting objects in its environment,

-

Simulator
environment

Sonar readings

Workspace
structures

built to represent
surfaces indicated by
readings

Figure 2 : Structures built for an object

The arcs around the sonar sensors in the bottom of the
figure correspond to candidate surfaces that span those
sensors. These form the emergent representation of the
approaching corner, which not only provide a piece of its
world-map but also augment the adaptive behavior of the
robot. For instance, non-reflex navigational choices are
made using this representation (e.g. exploration of an
opening or repeat measurements to refine the map). Also
certain surfaces may become undetectable during the
approach but the representation serves as a model of what
is there to guide the blinded low-level navigation skills.

Conclusion

We have developed the Madcat robot control architecture,
which supports a robot learning about its environment
through exploration. It was motivated theoretically by the
recognition that its predecessor, Copycat, is an instance of
an autopoeitic system as well as by ideas from the study of
embodied cognition and emergent behavior in dynamical
systems. Based on these insights, we have refined the
architecture to incorporate interaction with the environment
and perceptions of temporal patterns during that
interaction. Using context-driven feedback provided by the
slipnet, the program produces an interactively refined map
of the robot’s space. We believe this represents a novel
contribution to the existing architectures for modeling
intelligent behavior. We will continue to investigate this
interactive verification and refinement between model and
world as a basis for machine learning.

There are other problems to which we would like to apply
this architecture in the hopes of gaining further insights
into the connection between autopoeisis and intelligent
behavior. Better synthesis between different sensory
modalities, such as between sonar and color vision
information would be of particular interest in the robotics
domain. Also, we intend to explore how Madcat refines its
emergent representation when it changes its environment,
for example by moving objects in its environment. The
robotics arena is an excellent domain for further research on
issues in emergent and embodied cognition.

In a non-robotics domain, we believe that our
architecture might also be adapted to form, from continued
exposure to behavior-sentence pairings, a kind of
“grounded” meaning representation for certain embodied
linguistic forms. Some early work toward this end was done
in the beginning stages of the Madcat project (Rogati,
Lewis & Luger 2000).

Acknowledgments

This research has been supported at the University of New
Mexico by the NSF CISE Research Infrastructural award
CDA-9503064 and NSF 9800929, and an international
extension to work at the University of Edinburgh (NSF
9900485). The contributions of Brendan McGonigle,
Matthew Fricke and Monica Rogati have been invaluable.

References

Brooks, R. (1991) Intelligence Without Representation.
Reprinted in Luger, G. (ed). 1995. Computation &
Intelligence. 343-364. Cambridge: MIT Press.

Clark, A. (1997). Being There. Cambridge: Bradford
Books/MIT Press.

Hendriks-Jansen, H. (1996). Catching Ourselves in the Act.
Cambridge: MIT Press.

Hofmeyr, S. and Forrest, S. (2000) Architecture for an
Artificial Immune System. In Evolutionary
Computation Journal. (in press)

Hofstadter, D. et. al. (1995). Fluid Concepts and Creative
Analogies. NY:Basic Books.

Holland, J. (1986). Escaping Brittleness: The Possibilities of
General-Purpose Learning Algorithms Applied to
Parallel Rule-Based Systems. Reprinted in Luger, G.
(ed.). 1995. Computation & Intelligence. 275-304.
Cambridge: MIT Press.

Hordijk, W., Crutchfield, J. and Mitchell, M. (1998)
Mechanisms of Emergent Computation in Cellular
Automata. In Parallel Problem Solving from Nature,
Fifth International Conference. Berlin: Springer.

Lenat, D. and Guha, R. (1990). Building Large Knowledge-
Based Systems: Representation and Inference in the
CYC Project. Addison-Wesley.

Lewis, J and Luger, G. (2000). A Constructivist Model of
Robot Perception and Performance. In Proceedings of
the Twenty-Second Annual Conference of the
Cognitive Science Society. Philadelphia: Mahwah, NJ:
Lawrence Erlbaum Associates, Publishers.

Maturana, H. and Varela, F. (1980). Autopoeisis and
Cognition. Dordrecht, Holland:D. Reidel.

McGonigle, B. (1998). Autonomy in the making: Getting
robots to control themselves. In [nternational
Symposium on Autonomous Agents. Lanzarote: Oxford
University Press.

Mitchell, M. (1993). Analogy-Making as Perception.
Cambridge: Bradford Books/MIT Press.

Newell, A. and Simon, J. (1976). Computer Science as
Empirical Inquiry. Reprinted in Computation &
Intelligence, ed. Luger. G. (1995) Cambridge, MIT
Press.

Rogati, M., Lewis, J. and Luger, G. (2000). A Deformable
Semantic Network as a Tool for Context-Based
Ambiguity Resolution. Internal tech report, UNM CS
department. (NASA PURSUE Student Conference
Paper).

Steels, L. (1996). The origins of intelligence. In
Proceedings of the Carlo Erba Foundation Meeting
on Artificial Life. Berlin: Springer-Verlag.

Sutton, R. and Barto, A. (1998). Reinforcement Learning.
Cambridge: MIT Press.

Winograd, T. (1972) Understanding Natural Language.
NY: Academic Press.

